Banach-Tarski paradox - définition. Qu'est-ce que Banach-Tarski paradox
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Banach-Tarski paradox - définition


Banach-Tarski paradox         
IDEA OF TAKING APART AN OBJECT AND CONSTRUCTING TWO IDENTICAL COPIES OF IT
Banach Tarski Paradoxical Decomposition; Banach-Hausdorff-Tarski Paradox; Banach-Hausdorff-Tarski paradox; Hausdorff–Banach–Tarski paradox; Hausdorff-Banach-Tarski paradox; Banach-Tarski; Banach-Tarski paradox; Banach-Tarksi theorem; The Banach-Tarski Paradox; Tarski-Banach paradox; Tarski-Banach Theorem; Banach-Tarski Theorem; Banach-Tarski theorem; Banach–Tarski theorem; Banach–Tarski Theorem; Banach Tarski paradox; Tarski Banach paradox; Tarski Banach theorem; Banach-Tarski Paradox; Banach-Tarksi paradox; Banach Tarski; Banach Tarski Paradox; Hausdorf-Banach-Tarski Paradox; Banach-Tarski sphere dissection; Pea and the Sun; Pea and the Sun paradox; Banach–Tarski; Banach-Tarsky; Banach-Tarsky paradox
<mathematics> It is possible to cut a solid ball into finitely many pieces (actually about half a dozen), and then put the pieces together again to get two solid balls, each the same size as the original. This paradox is a consequence of the Axiom of Choice. (1995-03-29)
The BanachTarski Paradox (book)         
BOOK ABOUT THE MATHEMATICAL PARADOX
The Banach–Tarski Paradox; The Banach-Tarski Paradox (book)
The BanachTarski Paradox is a book in mathematics on the BanachTarski paradox, the fact that a unit ball can be partitioned into a finite number of subsets and reassembled to form two unit balls. It was written by Stan Wagon and published in 1985 by the Cambridge University Press as volume 24 of their Encyclopedia of Mathematics and its Applications book series.
D'Alembert's paradox         
  • Jean le Rond d'Alembert (1717-1783)
  • Steady and separated incompressible potential flow around a plate in two dimensions,<ref>Batchelor (2000), p. 499, eq. (6.13.12).</ref> with a constant pressure along the two free streamlines separating from the plate edges.
  • wake]],<br>
•5: post-critical separated flow, with a turbulent boundary layer.
  • Pressure distribution for the flow around a circular cylinder. The dashed blue line is the pressure distribution according to [[potential flow]] theory, resulting in d'Alembert's paradox. The solid blue line is the mean pressure distribution as found in experiments at high [[Reynolds number]]s. The pressure is the radial distance from the cylinder surface; a positive pressure (overpressure) is inside the cylinder, towards the centre, while a negative pressure (underpressure) is drawn outside the cylinder.
  • circular]] cylinder in a uniform onflow.
THE THEOREM THAT, FOR INCOMPRESSIBLE AND INVISCID POTENTIAL FLOW, THE DRAG FORCE IS 0 ON A BODY MOVING WITH CONSTANT VELOCITY RELATIVE TO THE FLUID, IN CONTRADICTION TO REAL LIFE, WHERE VISCOSITY CAUSES SUBSTANTIAL DRAG, ESPECIALLY AT HIGH VELOCITIES
D'Alembert's Paradox; D'Alembert paradox; Hydrodynamic paradox; D'Alembert Paradox; D'Alemberts Paradox; D'Alemberts' Paradox; Dalembert's Paradox; Hydrodynamical paradox; Hydrodynamics paradox; D'alembert's Paradox
In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a contradiction reached in 1752 by French mathematician Jean le Rond d'Alembert.Jean le Rond d'Alembert (1752).

Wikipédia

Banach–Tarski paradox
thumb|right|350px|"Can a ball be decomposed into a finite number of point sets and reassembled into two balls identical to the original?"